Генетическое разнообразие популяции связано обратной зависимостью с уровнем заботы о потомстве

Рис. 1. Уровень генетического разнообразия у 76 видов животных. Слева — эволюционное дерево, отражающее родственные связи изученных видов. Эти виды относятся к 31 семейству (для каждого семейства приведено схематичное изображение одного из представителей) и представляют 8 типов животных (названия типов приведены справа). Левая разноцветная колонка отражает уровень нейтрального генетического полиморфизма для каждого вида (см. шкалу вверху); πs — процент синонимичных сайтов, различающихся у двух случайно выбранных гомологичных последовательностей (мера нейтрального полиморфизма). Средняя разноцветная колонка отражает размер «пропагулы», то есть организма на той стадии развития, когда он покидает родителей и переходит к самостоятельной жизни (мера родительского вклада). Правая колонка характеризует географическое распространение вида. Рисунок из обсуждаемой статьи в Nature


Виды животных сильно отличаются друг от друга по уровню генетического разнообразия (полиморфизма), однако причины этих различий точно не установлены. Анализ транскриптомов 76 видов животных, относящихся к 31 семейству и восьми типам, позволил выявить ключевой фактор, коррелирующий с уровнем генетического полиморфизма. Им оказался уровень родительского вклада в потомство, который можно оценить по размеру особей на той стадии, когда они покидают родителей и переходят к самостоятельной жизни. Как выяснилось, низкий генетический полиморфизм характерен для видов, выпускающих в мир немногочисленное, но зато крупное и способное за себя постоять потомство, а высокий — для тех, кто бросает многочисленных мелких, незащищенных потомков на произвол судьбы. Данный результат заставляет пересмотреть некоторые устоявшиеся представления популяционной генетики и по-новому взглянуть на эволюционную роль заботы о потомстве.

Уровень генетического полиморфизма популяции (или вида в целом) считается в популяционной генетике важнейшим показателем, от которого зависят эволюционная пластичность вида, его приспособляемость к переменам среды и риск вымирания.

Виды животных сильно различаются по уровню генетического полиморфизма. Например, у гепардов разнообразие крайне низкое. Это объясняется недавним «бутылочным горлышком» — экстремальным снижением численности, в результате которого почти весь предковый полиморфизм был потерян. Поэтому все ныне живущие гепарды являются близкими родственниками, а генетически они почти идентичны друг другу. У ланцетника, наоборот, полиморфизм рекордно высок (см.: Геном ланцетника помог раскрыть секрет эволюционного успеха позвоночных, «Элементы», 23.06.2008). Это, предположительно, объясняется тем, что численность популяции ланцетников оставалась очень высокой в течение долгого времени.

Впрочем, одной лишь численностью популяции невозможно объяснить межвидовые различия по уровню полиморфизма. Выдающийся эволюционный генетик Ричард Левонтин (Richard Lewontin) еще 40 лет назад назвал объяснение этих различий центральной проблемой популяционной генетики (R. C. Lewontin, 1974. The Genetic Basis of Evolutionary Change). Однако добиться полной ясности в данном вопросе пока не удалось.

В теории проблема выглядит относительно простой. Согласно нейтральной теории молекулярной эволюции, в «идеальной» популяции (с абсолютно свободным, случайным скрещиванием, постоянной численностью, равным числом самцов и самок и т. д.) должен поддерживаться постоянный, равновесный уровень нейтрального генетического полиморфизма, зависящий только от двух переменных: темпа мутагенеза (частоты появления новых нейтральных мутаций) и эффективной численности популяцииNe (см. также Effective population size). Последняя в идеале равна числу особей, участвующих в размножении, но в далекой от идеала реальности вычислять ее приходится сложными окольными путями — например, по косвенным признакам, указывающим на силу генетического дрейфа: чем ниже Ne, тем сильнее должен быть дрейф (см.краткое содержание главы 3 “Effective population size” учебника по популяционной генетике).

Для большинства видов измерить Ne затруднительно. Гораздо проще оценить «обычную» численность (N). Поскольку Ne, по-видимому, все-таки должна (со всеми оговорками) положительно коррелировать с N, логично предположить, что у массовых видов генетическое разнообразие должно быть в среднем выше, чем у малочисленных.

Эмпирические данные, однако, не дают этой гипотезе однозначного подтверждения. Похоже, различия по N позволяют объяснить лишь небольшую долю межвидовой вариабельности по уровню полиморфизма. Чем же объясняется всё остальное? Большинство специалистов предполагают совокупное влияние множества факторов, таких как темп мутагенеза (прямые данные по которому есть пока лишь для немногих видов), популяционная структура и ее динамика, отбор полезных мутаций (приводящий к «выметанию» нейтрального полиморфизма из окрестностей мутантного локуса). Но главным фактором обычно считают историческую динамику численности, в том числе наличие в прошлом периодов резкого сокращения численности (как в случае с гепардами) или длительное их отсутствие (как в случае с ланцетниками).

Впрочем, до сих пор попытки эмпирическим путем выяснить причины межвидовых различий по уровню полиморфизма имели фрагментарный характер: анализировались либо отдельные группы животных, либо небольшое число генов. Коллектив генетиков из Франции, Великобритании, Швейцарии и США попытался найти более общее решение «центральной проблемы популяционной генетики» при помощи современных методов секвенирования транскриптомов. Авторы получили и проанализировали транскриптомы 76 видов животных, относящихся к разным ветвям эволюционного дерева. Изученные виды представляют 31 семейство животных, принадлежащих к восьми типам: нематодам,членистоногиммоллюскамнемертинамкольчатым червямиглокожимхордовым и книдариям.

Всего было исследовано 374 транскриптома, то есть в среднем изучено примерно по пять особей каждого вида и по 10 копий каждого гена (поскольку особи диплоидные). Этого достаточно, чтобы с приемлемой точностью оценить уровень полиморфизма белок-кодирующих последовательностей. В качестве меры нейтрального полиморфизма авторы использовали стандартный показатель — процент синонимичных различий между двумя случайно выбранными гомологичными последовательностями, πs. Был вычислен также процент несинонимичных (значимых) различий πn (см. Nucleotide diversity).

Оказалось, что уровень полиморфизма в изученной выборке варьирует в широких пределах. Рекордно низкое генетическое разнообразие обнаружилось у термита Reticulitermes grassei (πs = 0,1%), максимальное — у морского брюхоногого моллюска Bostrycapulus aculeatus(πs = 8,3%). Различие почти на два порядка!

Виды с высоким и низким полиморфизмом распределены по эволюционному дереву довольно хаотично (рис. 1). При этом родственные виды (относящиеся к одному и тому же семейству) в среднем более сходны друг с другом по уровню полиморфзима, чем представители разных семейств. Этот факт противоречит гипотезе о том, что главным фактором, влияющим на полиморфизм, являются случайные перипетии популяционной истории. Ведь нет оснований предполагать, что у видов, относящихся к одному семейству, должна быть сходная динамика численности. Правда, тут мог сказаться и подбор видов для анализа: например, все три вида морских ежей семейства Schizasteridae, выбранные для анализа, — это обитатели высоких широт Южного полушария, относящиеся к «сумчатым» морским ежам с развитой заботой о потомстве (см. ниже), хотя в этом семействе преобладают виды, не заботящиеся о потомстве.

Авторы сопоставили полученные данные с биологическими и биогеографическими характеристиками изученных видов. Биологических характеристик было шесть: размер взрослой особи, масса тела, максимальная продолжительность жизни, подвижность (расселительная способность) взрослых особей, плодовитость и размер «пропагулы» (то есть той стадии жизненного цикла, на которой животное покидает родителей и переходит к самостоятельной жизни: у кого-то это маленькая икринка, у кого-то — почти взрослая, тщательно выкормленная и выпестованная родителями молодая особь).

Никакой корреляции генетического полиморфизма с биогеографическими и экологическими показателями (площадь ареала, приуроченность к широтным зонам, водный или наземный образ жизни и т. п.) обнаружить не удалось (хотя биогеографические характеристики, надо признать, оценивались весьма грубо). Напротив, все шесть биологических характеристик достоверно коррелируют с полиморфизмом, в совокупности объясняя 73% вариабельности видов по показателю πs. Наилучшим предиктором полиморфизма, намного превосходящим в этом отношении остальные пять переменных, оказался размер пропагулы (рис. 2).

Рис. 2. Размер пропагулы (a, Propagule size) коррелирует с уровнем генетического полиморфизма (πs) гораздо сильнее, чем размер взрослого животного (b, Adult size). При этом даже та слабая корреляция, которая все же наблюдается во втором случае, в основном сводится к тому, что для крупных животных в среднем характерен больший родительский вклад в потомство, чем для мелких. Родительский вклад (Parental investment), определяемый как отношение размера пропагулы к размеру взрослой особи, обозначен на рисунке b оттенками красного и синего (см. шкалу справа). Рисунок из обсуждаемой статьи в Nature

 

В этом и состоит главная закономерность, обнаруженная авторами: чем более крупных потомков выпускают родители в мир, тем ниже (в среднем) генетический полиморфизм вида. Размер пропагулы, в свою очередь, отрицательно коррелирует с плодовитостью, причем эта корреляция весьма сильна. Таким образом, низкий полиморфизм характерен для животных, производящих небольшое количество тщательно выпестованных, хорошо подготовленных к самостоятельной жизни потомков (K-стратегия; см. Теория r-K отбора), а высокий — для тех, кто производит множество мелких и слабых потомков, бросая их на произвол судьбы (r-стратегия).

Размер взрослого животного коррелирует с полиморфизмом намного слабее (рис. 2, b). Этот результат является неожиданным, потому что размер, как правило, отрицательно коррелирует с численностью (популяции крупных животных в среднем имеют меньшую численность). Логично было бы предположить, что именно размер взрослого животного будет наилучшим предиктором полиморфизма, но это не подтвердилось. Среди видов с низким полиморфизмом есть как мелкие животные (менее 1 см), так и очень крупные. Виды одинакового размера могут иметь контрастно различающиеся уровни полиморфизма, если одни из этих видов являются K-стратегами, а другие — r-стратегами. Например, из рассмотренных авторами пяти видов морских ежей (Echinocardium cordatum, Echinocardium mediterraneum, Abatus cordatus, Abatus agassizi, Tripylus abatoides) первые два не заботятся о потомстве, производят много мелких яйцеклеток с небольшим количеством желтка, и поэтому их потомкам приходится начинать самостоятельную жизнь в виде крохотных, питающихся планктоном личинок — эхиноплутеусов. Три последних вида относятся к марсупиальным (сумчатым) морским ежам, чьи самки производят крупные, богатые желтком яйца и вынашивают молодь в специальных выводковых камерах, представляющих собой видоизмененные органы дыхания (петалоиды). У этих видов «пропагула», переходящая к самостоятельной жизни, представляет собой уже вполне сформированного морского ежика диаметром в несколько миллиметров. Соответственно, у первых двух видов полиморфизм высокий (πs = 0,0524 и 0,0210), у трех последних — низкий (0,0028, 0,0073, 0,0087). При этом по размеру взрослых особей все пять видов мало отличаются друг от друга. Аналогичная картина характерна для K- и r-стратегов среди офиур, немертин, насекомых и др.

Что касается насекомых, то в категорию K-стратегов здесь попали эусоциальные виды: термиты, пчелы, муравьи. В данном случае очевидно, что по размеру взрослой особи нельзя судить об Ne: численность (N) муравьев может быть очень высокой, что соответствует их небольшим размерам, но размножаться из них могут лишь немногие — «цари» и «царицы» (Ne << N). Понятно, что K-стратегия, обусловленная эусоциальностью, ведет к резкому снижению Ne. В других случаях этот эффект не столь очевиден.

Тем не менее авторы полагают, что обнаруженная связь между K-стратегией и низким полиморфизмом обусловлена именно отрицательным влиянием K-стратегии на эффективную численность, даже если природа этого влияния пока непонятна. Альтернативное объяснение могло бы состоять в том, что для K-стратегов характерен пониженный темп мутагенеза. Однако факты говорят скорее об обратном: темп мутагенеза (среднее число мутаций на геном за поколение), судя по всему, у K-стратегов выше, чем у r-стратегов. Одна из причин в том, что K-стратеги живут в среднем дольше, а поколения у них разделены большим числом клеточных делений (см.: У шимпанзе, как и у людей, число мутаций у потомства зависит от возраста отца, «Элементы», 18.06.2014). Так что различия в темпах мутагенеза скорее должны ослаблять, чем усиливать найденную отрицательную корреляцию между вкладом в потомство и полиморфизмом.

Рис. 3. Попарные корреляции между исследованными показателями: piS — синонимичный полиморфизм, piN — несинонимичный полиморфизм, piNpiS — отношение второго к первому, PropaguleSize — размер пропагулы, Longevity — продолжительность жизни, Fecundity — плодовитость, Size — размер, BodyMass — масса тела, Speed — скорость (подвижность). Цвета отражают величину коэффициента корреляции Пирсона (см. шкалу справа). Рисунок из обсуждаемой статьи в Nature

 

Уровень несинонимичного (значимого) нуклеотидного полиморфизма (πn) у исследованных видов тоже лучше всего коррелирует с размером пропагулы, хотя эта корреляция слабее, чем для синонимичного полиморфизма (рис. 3). Отношение πn/πs широко варьирует у разных видов и сильнее всего коррелирует с продолжительностью жизни: у долгоживущих организмов доля несинонимичных полиморфизмов повышена. Этот результат легко объясним: у долгоживущих видов, при прочих равных условиях, эффективная численность популяции должна быть ниже, а дрейф сильнее. Следовательно, слабовредные значимые мутации у долгожителей отбраковываются менее эффективно.

Таким образом, исследование показало, что уровень генетического полиморфизма можно довольно точно предсказать, зная определенные аспекты биологии рассматриваемого вида, такие как величина родительского вклада в потомство, приверженность K- или r-стратегии и продолжительность жизни. Случайные колебания численности популяции, полагавшиеся до сих пор чуть ли не главным фактором, влияющим на уровень полиморфизма, по-видимому, играют менее важную роль в глобальном масштабе. Хотя, конечно, нельзя отрицать их определяющее значение во многих частных ситуациях (как у тех же гепардов).

Авторы полагают, что K-стратегия в долгосрочной перспективе должна коррелировать с более низкими значениями Ne, а r-стратегия — с более высокими. Возможно, дело в том, что K-стратеги, благодаря эффективной заботе о потомстве, в целом более толерантны к низкой численности популяции: они могут долго существовать при низкой численности, не вымирая. Они могут, подобно гепардам, успешно восстановиться даже после экстремальных снижений численности, когда от всего вида остается несколько десятков особей. Напротив, r-стратеги сильнее зависят от изменений среды, которые приводят к резким колебаниям численности; их стратегия более «рискованная», поэтому в долгосрочной перспективе будут сохраняться только те виды, чья численность лишь очень редко или никогда не снижается до экстремально низких значений. Косвенно это рассуждение подтверждается палеонтологическими данными: во время массовых вымираний K-стратеги, по-видимому, имеют больше шансов выжить, чем r-стратеги, особенно крупноразмерные. Например, во время великого вымирания на рубеже мела и палеогена (66 млн лет назад) вымерли динозавры, у которых были большие проблемы с заботой о потомстве, — но выжили птицы и млекопитающие (ярко выраженные K-стратеги); вымерли аммониты (r-стратеги), но выжили наутилоидеи с крупными «пропагулами».

Исследование также заставляет задуматься об общих тенденциях эволюции K- и r-стратегов. На первый взгляд кажется, что у первых эволюционные перспективы должны быть в целом гораздо хуже, чем у вторых. У K-стратегов ниже смертность, особенно на ранних стадиях развития, что ограничивает возможности для естественного отбора. Как мы теперь знаем, у них ниже также и генетический полиморфизм, который считается важнейшим показателем «генетического благополучия» вида, приспособляемости и эволюционной пластичности. У них, вероятно, в среднем ниже и эффективная численность популяции. Это способствует ослаблению отбора и усилению дрейфа, что, в свою очередь, должно замедлять отбраковку слабовредных мутаций и фиксацию слабополезных. Стало быть, у K-стратегов должен быть большой мутационный груз (см. Genetic load). Если посмотреть на ситуацию под таким углом, то становится вообще непонятно, почему K-стратеги до сих пор не вытеснены повсеместно r-стратегами. В действительности, судя по палеонтологическим данным, тенденция скорее обратная, особенно у таких ключевых представителей наземной биоты, как сосудистые растения и четвероногие (наземные позвоночные). В этих группах в течениефанерозоя прослеживается явный сдвиг в сторону K-стратегии: беззащитные «пропагулы» в виде мельчайших спор и икринок уступают место увесистым семенам и подрощенным, хорошо упитанным детенышам.

По-видимому, K-стратегия каким-то образом компенсирует все вышеперечисленные недостатки. Одним из факторов может быть отмеченная выше толерантность к низкой численности, обусловленная меньшей зависимостью смертности от непредсказуемых колебаний среды: сравните положение беззащитных лягушачьих икринок в пруду и птичьих яиц в теплом гнездышке с заботливой наседкой. Кроме того, хотя у K-стратегов уровень смертности (элиминации) ниже, эта смертность наверняка более избирательна и неслучайна, чем у r-стратегов. Гибель мелких «пропагул» часто происходит случайно и вообще не зависит от качества генов. Возможно, отбор у K-стратегов даже при низком уровне смертности достаточно эффективен за счет более избирательной (зависящей от качества генов) элиминации. Наконец, можно допустить, что забота о потомстве делает многие потенциально вредные мутации (которые снизили бы шансы на выживание молодняка, брошенного на произвол судьбы) де-факто нейтральными. В этом случае часть значимого (несинонимичного) полиморфизма у K-стратегов в действительности может оказаться не «мутационным грузом» (слабовредными мутациями, не отбракованными своевременно из-за сильного дрейфа и слабого отбора), а нейтральным полиморфизмом, повышающим эволюционную пластичность.

Источник: J. Romiguier, P. Gayral, M. Ballenghien, A. Bernard, V. Cahais, A. Chenuil, Y. Chiari, R. Dernat, L. Duret, N. Faivre, E. Loire, J. M. Lourenco, B. Nabholz, C. Roux, G. Tsagkogeorga, A. A.-T. Weber, L. A. Weinert, K. Belkhir, N. Bierne, S. Glémin & N. Galtier. Comparative population genomics in animals uncovers the determinants of genetic diversity // Nature. 2014. V. 515. P. 261–263.

Александр Марков


Афоризмы

Не знаю, будет ли в России экологическая полиция, но то, что экологическая Инквизиция уже есть - это факт